Search for supersymmetry in final states with one lepton, jets and missing transverse energy with the ATLAS detector

Sophio Pataraia
Bergische Universitaet Wuppertal
(on behalf of the ATLAS collaboration)

The ATLAS Experiment

SUSY searches relies on:

Good detector acceptance, Good object reconstruction, identification, Good energy resolution, And a lot of data...

SUSY phenomenology and search strategies

Could solve:

- 1) The hierarchy problem, protects the Higgs mass from large quantum corrections,
- 2) the unification of gauge couplings,
- 3) a dark matter candidate.

In R-parity conserving scenarios, sparticles come in pair, Lightest SuperSymetric Particle (LSP) is stable and escapes undetected,

Signature: High Missing Energy,

Exact decay chain depends on SUSY breaking mechanism and mass hierarchy of sparticles, but visible part consists with SM quarks (high- p_{τ} jets) and leptons.

A SUSY decay chain, where Neutralino is LSP

SUSY models, assume R-parity conservation

MSSM at least 105 new parameters,

-> Constrained MSSM (cMSSM) -> minimal SuperGravity

(mSUGRA) – 5 parameters: m_0 , $m_{1/2}$, A_0 , $\tan\beta$ and the sign of μ .

ATLAS -
$$A_0$$
 = **0 GeV**, $\tan \beta = 10$, $\mu > 0$.

Note: benchmark point on plots $m_0 = 500 \text{ GeV}$; $m_{1/2} = 330 \text{ GeV}$;

Simplified models:

Decoupled sparticle spectra, particles of no interests considered very massive, isolated single production and decay mode (arXiv:1105.2838, arXiv:1102.5338).

Three free parameters: $m_{\tilde{q}/\tilde{g}}, m_{\tilde{\chi^0}}$, and $x = (m_{\tilde{\chi^\pm}} - m_{\tilde{\chi^0}})/(m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^0}})$.

For leptonic final states $\tilde{\chi^{\pm}} \! \to \! LSP$ chain, $\tilde{\chi}^{\pm} \! \to \! W(*) \tilde{\chi^0}$,

- > In squark-chargino-neutralino model: $\tilde{q}
 ightharpoonup q' \tilde{\chi}^{\pm}
 ightharpoonup q' W(*) \tilde{\chi}^{0}$,
- $ilde{\mathcal{G}}$ In gluion-charginp-neutralino model: $\tilde{g} o q\, \overline{q}\, \tilde{\chi}^{\scriptscriptstyle \pm} o q\, \overline{q}\, W\, (*) \tilde{\chi}^{\scriptscriptstyle 0}$.

Data and Monte Carlo Samples

√s=7 TeV proton-proton data recorded by ATLAS in 2011:

$$\int Ldt = 1035 \pm 38 \ pb^{-1}$$

Monte Carlo:

Aplgen: W, Z+jets,

Herwig: Dibosons, Signal,

MC@NLO: single t, $t\bar{t}$.

1-lepton + Jets + Etmiss searches

Easy to trigger, well modeled background contributions

Pre-Selection:

- Data quality flags,
- Single lepton trigger fired,
- Good primary vertex,
- Cosmic muon veto,
- > ==1 muon/electron with p_T>20/25 GeV,
- > ≥ 3/4Jets, p_T requirement on next slide,
- \rightarrow Δφ (jet, E_t^{miss}) >0.2 for all jets,

Transverse mass, $m_{_{\rm T}}$ Transverese scalar mass, $H_{_{\rm T}}$ "effective" mass, $m_{_{\rm eff}}$

$$\begin{split} m_{T} = & \sqrt{2*p_{T}^{l}*E_{T}^{miss}*(1-\cos(\Delta\Phi(l,E_{T}^{miss})))}, \\ H_{T} = & p_{T}^{l} + \sum_{i=1}^{3} p_{T}^{jet_{i}}, \\ m_{eff} = & H_{T} + E_{T}^{miss} \end{split}$$

1-lepton + Jets + Etmiss searches

4 Signal Regions (SR): 3 jet loose(3JL), 3 jet tight(3JT), 4 jet loose (4JL), 4 jet tight(4JT).

After pre-selection:

Event Selection in SRs	3JL	3JT	4JL	4JT
Leading jet p _T [GeV]	60	80	60	60
Subsequent jets p _T [GeV]	25	25	25	40
M _T [GeV]	100	100	100	100
E _T miss [GeV]	125	240	140	200
E _T miss /M eff	0.25	0.15	0.30	0.15
M _{eff} [GeV]	500	600	300	500

$m_{\mbox{\tiny eff}}$ and $E_{\mbox{\tiny T}}^{\mbox{\tiny miss}}$ distributions after 3J pre-selection

Good agreement between Data and SM expectation within uncertainties after 3J pre-selection. **Note: 4J pre-selection on Backup slide.**

Control Regions (CRs)

Main BG in SR: Top and W+jets processes.

W+jets CR:

After pre selection, $m_{eff} > 500/300$ GeV for 3J/4J CRs, 30 GeV $< E_t^{miss} < 80$ GeV, 40 GeV $< m_{T} < 80$ GeV, no b-tagged jet among the three hardest jets.

Top CR:

Same as W + jets, but at least one b-tagged jet among the three hardest jets.

QCD CR:

 $E_{_{\rm T}}^{\rm miss}$ < 30 GeV, 1jet with p_{_}>30/60 GeV in electron/muon channel.

m_{eff} distributions in 3J CRs

W+jets CR

Top CR

Good agreement between Data and SM expectation within uncertainties in CRs. **Note: 4J CRs on Backup slide.**

Background (BG) estimation

Data driven QCD estimation with matrix method:

Loosening lepton ID, dropping isolation criteria,

$$\begin{split} N_{\text{pass}} &= \epsilon_{\text{real}} N_{\text{real}} + \epsilon_{\text{misid.}} N_{\text{misid.}} \\ N_{\text{fail}} &= (1 - \epsilon_{\text{real}}) N_{\text{real}} + (1 - \epsilon_{\text{misid.}}) N_{\text{misid.}} \end{split}$$

 N_{pass}/N_{fail} loose events passing/failing the tight selection.

 $\epsilon_{_{real}}$ / $\epsilon_{_{misid.}}$ is ID/ misID efficiency.

 ϵ_{misid} , N_{misid} is estimated for every CRs and SRs.

Top and W+ jets contribution in SRs:

Normalization of W and Top BG derived from the CRs,

- Assumed MC shapes,
- > Transfer factors $C_{CR->SR} = N_{MC}^{SR} / N_{MC}^{CR}$, for each BG and each CR, > Extrapolate to SR: $N_{predicted}^{SR} = N_{data}^{CR} * C_{CR->SR}$,
- Simultaneous likelihood fit of the different CRs to account for cross contamination.

The procedure validation (MC shape assumption) in 28 additional CRs,

- → low m_T and high E_t miss ,
- $_{\text{>}}$ low $E_{_{T}}^{\text{ miss}}$ and high $m_{_{\text{+}}}.$

Good agreement were observed between predicted and observed event counts in every validation CRs.

Systematic Uncertainties

The systematic uncertainties on BG estimation, in order by size of the contribution:

- Jet energy Scale (JES) and Jet Energy Resolution (JER) measured from 2010 data + pile up effects 2011,
- MC modeling uncertainties affecting transfer factors,
- MC statistics of Top and W processes,
- Lepton energy/momentum scale and resolution,
- Lepton ID/ misID,
- > Heavy flavor tagging uncertainties.

Total uncertainty in 3J Loose SR:

- Electron channel ±8.4% (stat.) ±30.2% (syst.),
- > Muon channel $\pm 7.6\%$ (stat.) $\pm 19.3\%$ (syst.).

Note: Break down of all systematic in all SRs on Backup slide.

Signal systematic uncertainties, calculated for each signal hypothesis:

- > Variation of factorization and normalization scale in PROSPINO,
- > Variations in α_{ς} and PDF uncertainties (CTEQ6),
 - → Total theory ~ 20-30%.
- MC statistics ~15%,
- Lepton trigger and ID (1-4%),
- → JES, JER ~(1-10%),
- Pile-up ~(1-10%),
- Luminosity 3.7%.

m_{eff} distributions in 3J SRs

3J Loose

Electron Channel

Data 2011 (\sigma = 7 \text{ FeV})
Standard Model multijets (data estimate)
W+jets
Z+jets
Single top
Dibosons
MSUGRA m₀=500 m_{1/2}=330
Electron Channel
3J Loses Signal Region before M_{eff} cu

3J Tight

- Plots are produced before m_{eff} cut.
- Good agreement between Data and SM expectation within uncertainties,
- No excess observed.

Note: 4J SRs on Backup slide.

Combined fit to the number of events in the SR and CRs,

$$L(n|s,b,\theta) = P_s x P_w x P_T x C_{syst},$$

n - observed events, s - signal counts to be tested, b - background counts,

 θ - systematic uncertainties, treated as nuisance parameters with a Gaussian pdf.

P functions are Poisson probability distributions for event counts in SR, and in Top and W CRs.

Two fits performed:

- > Discovery fit, signal events in SR left free, no signal contamination in CR (conservative approach as in this way BG can be only overestimated in SR),
- > Exclusion fit, signal events fix to the expected values in SR and CRs,

Model independent upper limits:

- > Derived from the discovery fit,
- Profile likelihood ratio technics,
- > CL_g method.

Electron channel	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} $ [fb]	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_B	p(s=0)
$\overline{3JL}$	50	52	63^{+23}_{-11}	0.21	0.79
3JT	14	14.3	$16.5^{+6.7}_{-3.0}$	0.30	0.71
4JL	33	34	38^{+15}_{-7}	0.35	0.65
4JT	10	10.6	$9.5^{+4.3}_{-1.6}$	0.61	0.42
Muon channel	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_{B}	p(s=0)
3JL	36	38	41^{+16}_{-7}	0.39	0.60
3JT	10	9.9	$11.4_{-2.0}^{+4.5}$	0.31	0.70
4JL	31	32	34^{+14}_{-7}	0.42	0.58
$4\mathrm{JT}$	9	8.9	$8.0^{+3.0}_{-1.6}$	0.63	0.39

95% CL upper limits on the visible cross-section ($\varepsilon\sigma_{obs}$), on the observed/expected (S_{obs}/S_{exp}) number of signal events. The CL_B, the confidence level for the BG hypothesis and discovery fit p-value (p(s=0)).

Note: Fit results for all CRs and SRs on Backup slide.

Interpretation: MSUGRA/CMSSM

observed and expected 95% CL exclusion limits in the combined electron and muon channels shown in m_0 and $m_{1/2}$ plane, for the MSUGRA/CMSSM model, where A_0 =0 GeV, $\tan\beta$ =10, μ >0.

New Limit: Mgluino = Msquark > 875 GeV.

Simplified Models

Results are presented in the m_{heavy} - m_{LSP} plane:

- Color coding: Cross section limit,
- Full line: Observed exclusion limit assuming 100% br. fraction to assumed decay modes,
- Dashed line: Expected exclusion limit.

3 fixed values of x considered to effectively scan the range:

$$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$

- \rightarrow Top row 1/4, lightest $\tilde{\chi}^{\pm}$,
- Middle row 1/2,
- > Bottom row 3/4, heaviest χ^{\pm} .

Gluon model has better reach in m_{heavy} - m_{LSP} plane, due to SR with 4-jet selection.

Conclusion

- > Presented SUSY searches in 1 lepton + jets + E_{T}^{miss} channel,
- Semi-data driven estimation of the dominant SM BG, and full data driven QCD estimations,
- No new physics found with 1.04fb⁻¹ ATLAS data,
- > Improved model independent upper limits on new physics,
- > Limits within the MSUGRA/CMSSM and Simplified models were derived.
- Results were also interpreted in bilinear R-Parity violation model in mSUGRA, see talk by Emma Torro, Parallel Session 9.

Backup slides

m_{eff} and $E_{\scriptscriptstyle T}^{\scriptscriptstyle miss}$ distributions after 4J pre-selection

Good agreement between Data and SM expectation within uncertainties after 4J pre-selection.

m_{eff} distributions in 4J CRs

W+jets CR

Top CR

Good agreement between Data and SM expectation within uncertainties after 4J pre-selection.

Breakdown of BG systematic uncertainties

Electron channel	3JL	3JT	$4\mathrm{JL}$	4JT
Total statistical $(\sqrt{N_{\rm obs}})$	±8.4	±3.7	±6.4	±3.0
Total background systematic	±30.2	±7.4	±17.9	±3.7
$\frac{1}{\text{Jet}/E_{\text{T}}^{\text{miss}}}$ energy resolution	±5.9	±0.5	±4.2	±0.8
$\text{Jet}/E_{\mathrm{T}}^{\mathrm{miss}}$ energy scale	± 18.6	± 4.1	± 13.6	± 2.4
Lepton energy resolution	± 0.5	± 0.3	± 0.1	± 0.3
Lepton energy scale	± 1.1	± 0.3	± 0.4	± 0.5
b-tagging	± 1.2	± 0.2	± 0.7	± 0.1
MC stat. top	± 5.8	± 2.0	± 3.8	± 1.4
MC stat. W	± 4.4	± 2.3	± 2.2	± 1.3
Lepton misidentification rate	± 1.4	± 0.1	± 0.2	< 0.1
Real lepton rate	± 1.5	± 0.3	± 0.8	± 0.1
Theory top	± 15.9	± 2.1	± 9.8	± 1.2
Theory W	± 19.0	± 5.6	± 5.1	± 1.9
Pile-up	± 5.1	± 1.0	± 2.5	± 0.4
Muon channel	3JL	3JT	4JL	4JT
Total statistical $(\sqrt{N_{\rm obs}})$	±7.6	±3.3	±7.1	± 2.7
Total background systematic	±19.3	±4.3	±15.8	± 2.7
$\overline{\text{Jet}/E_{\text{T}}^{\text{miss}}}$ energy resolution	±9.0	±1.1	±0.9	±0.5
$\text{Jet}/E_{\mathrm{T}}^{\text{miss}}$ energy scale	± 7.0	± 0.2	± 9.1	± 1.6
Lepton energy resolution	< 0.1	< 0.1	< 0.1	< 0.1
Lepton energy scale	± 0.8	± 0.3	± 1.4	± 0.5
b-tagging	± 1.0	± 0.2	± 0.9	± 0.1
MC stat. top	± 5.4	± 2.1	± 4.0	± 1.4
MC stat. W	± 2.5	± 1.4	± 2.6	± 0.7
Lepton misidentification rate	< 0.1	< 0.1	< 0.1	< 0.1
Real lepton rate	± 0.5	± 0.1	± 0.4	< 0.1
Theory top	± 12.9	± 2.4	± 10.0	± 1.2
Theory W	± 8.8	± 2.7	± 7.3	± 0.7
Pile-up	± 3.5	± 0.8	± 2.7	± 0.3

m_{eff} distributions in 4J SRs

4J Loose

4J Tight

- Plots are produced before m_{eff} cut.
- Good agreement between Data and SM expectation within uncertainties,
- No excess observed.

Fit results in SRs and CRs

565 64 ± 8 (58)
,
NF 96 (419)
$25 \pm 36 \ (413)$
76 ± 24
565 ± 24
W region
413
$70 \pm 7 \ (57)$
$22 \pm 23 \ (393)$
21.6 ± 5.7
413 ± 20
32

3J SRs and CRs

Electron channel	4JL Signal region	4JT Signal region	Top region	W region
Observed events	41	9	1382	1872
Fitted top events	$38 \pm 15 \ (34)$	$4.5 \pm 2.6 \; (4.1)$	$1258 \pm 44 \ (1138)$	$391 \pm 14 \; (354)$
Fitted W/Z events	$9.5 \pm 7.5 \ (9.2)$	$3.5 \pm 2.2 \; (3.4)$	$88 \pm 21 \ (86)$	$1242 \pm 89 \ (1202)$
Fitted QCD events	$0.90^{+0.54}_{-0.37}$	$0.00^{+0.02}_{-0.00}$	35 ± 13	239 ± 78
Fitted sum of background events	48 ± 18	8.0 ± 3.7	1382 ± 37	1872 ± 43
Muon channel	4JL Signal region	4JT Signal region	Top region	W region
Observed events	50	7	1448	1623
Fitted top events	$39 \pm 13 \ (36)$	$4.7 \pm 2.2 \; (4.3)$	$1319 \pm 45 \ (1231)$	$382 \pm 13 \; (357)$
Fitted W/Z events	$14.1 \pm 8.5 \ (14.2)$	$1.4 \pm 1.1 \; (1.4)$	$91 \pm 19 \ (92)$	$1169 \pm 46 \ (1185)$
Fitted QCD events	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.6}_{-0.0}$	38 ± 10	71 ± 16
Fitted sum of background events	53 ± 16	6.0 ± 2.7	1448 ± 38	1623 ± 40

4J SRs and CRs

The results are obtained using the "discovery fit". Nominal MC expectations (normalised to MC cross-sections) are given between parentheses for comparison.